
CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.

60000 TPS

How many CPUs ???

The results of an interesting research

Sebastiaan Mannem

1

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.2

But first

Who Am I:

DBA for 15 years

SQL Server
Oracle

Postgres

sebas@mannem.nl
sebastiaan.mannem@enterprisedb.com

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.3

But first

Who Am I:

Solutions Architect

EnterpriseDB

Professional Services

sebas@mannem.nl
sebastiaan.mannem@enterprisedb.com

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.4

But first

Who Am I:

Developer Open Source Software

https://docs.ansible.com/ansible/latest/modules/postgresql_pg_hba_module.html

https://github.com/bolcom/pgcdfga

https://github.com/bolcom/pg_replication_activity

https://github.com/sebasmannem/pg_cpu_test

sebas@mannem.nl
sebastiaan.mannem@enterprisedb.com

https://docs.ansible.com/ansible/latest/modules/postgresql_pg_hba_module.html
https://github.com/bolcom/pgcdfga
https://github.com/bolcom/pg_replication_activity
https://github.com/sebasmannem/pg_cpu_test

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.5

But first

Who Am I:

41 years old

Father of Three

Husband of one

sebas@mannem.nl
sebastiaan.mannem@enterprisedb.com

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.6

Question: How much CPU is required to run 60000 TPS?

Answer 1: The Johnny5 answer

Please tell me
● What…
● How…
● When…
● etc.

Will this ever end in an advice?

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.7

Question: How much CPU is required to run 60000 TPS?

Answer2: There is no correlation

There is no correlation

CPU != bottleneck

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.8

Question: How much CPU is required to run 60000 TPS?

Answer 3: Another customer tested, and

Doubtfully
representative

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.9

Question: How much CPU is required to run 60000 TPS?

Answer 4: You need to test

YES

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.10

So let's test
60000 TPS, how many CPU's?

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.11

Let's test

• Impact of increasing threads
• Impact of adding cores
• Is there a difference between processor architectures
• Impact of Preparing
• Impact of Transaction Control
• Difference between query types
• Impact of Storage options

• SSD
• Datadirectory on tmpfs
• Wal directory on tmpfs
• fsync = off

• Can we tune to get more TPS
• Impact of different programming languages

DEATH BY

POWERPOINT

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.12

Let's test

• Impact of increasing threads and adding cores
• Impact of Preparing / Transaction Control / query types
• Impact of Storage options
• Programming languages

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.13

Test program

GCP Compute VM

CENTOS/7

Docker

Centos/7

Postgres pg_cpu_test

client connections Threads

localhost/5432

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.14

pg_cpu_test

https://github.com/sebas
mannem/pg_cpu_test

https://github.com/

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.15

Load

• Definition of a Transaction
• Complies to ACID

• Test query types:
• empty, simple, read, write
• compare the results

• Test with and without Transaction Control
• and compare the results

• Test with and without Prepare
• and compare the results

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.16

Definition: Types of Queries

Without Transaction Control:
• Simple Query:

• select $1;
• Read:

• select col from table where col = $1;
• Update:

• Update table set col = $1 where col = $1;

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.17

Definition: Types of Queries

With Transaction Control:
• Empty

• begin;
• commit;

• Simple
• begin;
• select $1;
• commit;

• Read
• begin;
• select col from table where col = $1;
• commit;

• Write
• begin;
• update table set col = $1 where col = $1;
• commit;

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.18

Let's test
Adding cores

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.19

Let's test: Adding cores

• Run on GCP
• Run on n1, n2, n4, n8, n16
• Run on tmpfs, and normal storage
• Run Prepared, Transactional, write queries
• Run with 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000 threads

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.20

Adding cores (tmpfs)

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.21

Correlate

#cores Threads Peak TPS Peak

2 5 10.000

4 10 18.000

8 20 37.000

13 38 60.000

16 50 70.000

32 100 140.000

64 200 280.000

128 500 500.000

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.22

Adding cores (SSD)

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.23

Correlate

#cores Threads Peak TPS Peak

1 20 5000

2 20 6000

4 50 12.000

8 50 37.000

16 200 54.000

18 225 60.000

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.24

Let's test
Poolers

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.25

Let's test: Adding cores

• Run on GCP
• Run on n8
• Run on normal storage
• Run Prepared, Transactional, write queries
• Run with 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000 threads

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.26

Poolers

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.27

Let's test
Transaction Control

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.28

Let's test: Transaction Control

• Run on GCP (n8)
• Run on tmpfs / with SSD
• Run Prepared, write
• Run with 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000 threads

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.29

With / without Transaction Control (tmpfs)

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.30

With / without Transaction Control (SSD)

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.31

Let's test
Impact of storage

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.32

Let's test: Running on tmpfs / fsync=off

• Run on GCP (n8)
• Run Prepared
• Run with 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000 threads
• Run with these storage options

• SSD
• Datadirectory and WAL on tmpfs
• WAL on tmpfs
• fsync = off
• DATA and WAL on tmpfs, fsync=off

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.33

Running on SSD, tmpfs, nofsync

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.34

Running on SSD, tmpfs, nofsync (writes)

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.35

Let's test
Can we tune parameters?

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.36

Can we tune to get more TPS?

 How fast is your fsync flush

time

data block

data block

Disk

Page cache

data pageShared buffers

transactions

data page

data block

data page

checkpoint checkpointbgwriter

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.37

Can we tune to get more TPS?

 How fast is your fsync flush FOR WAL

time

WAL file

WAL block

Disk

Page cache

wal buffer ringWAL buffers

transactions

fsync

co
m

it

co
m

it

co
m

it

co
m

it

co
m

it
co

m
it

group commit group commit

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.38

Introduction of group commit

CommitDelay

Vadim B. Mikheev <vadim4o@yahoo.com>:
• https://github.com/postgres/postgres/commit/b58c0411bad414a5dbde8b38f615867c68adf55c
• https://github.com/postgres/postgres/commit/a7fcadd10ab67a9cc938eb2818aae33d5be0238a
• https://github.com/postgres/postgres/commit/db2faa943a0d3517f9e9641b9012d81ecc870ff6
• https://github.com/postgres/postgres/commit/5b0740d3fcd55f6e545e8bd577fe8ccba2be4987
• https://github.com/postgres/postgres/commit/f0e37a85319e6c113ecd3303cddeb6edd5a6ac44
• https://github.com/postgres/postgres/commit/a70e74b060ab2769523ad831f571cb80122121d3
• https://github.com/postgres/postgres/commit/741510521caea7e1ca12b4db0701bbc2db346a5f

mailto:vadim4o@yahoo.com
https://github.com/postgres/postgres/commit/b58c0411bad414a5dbde8b38f615867c68adf55c
https://github.com/postgres/postgres/commit/a7fcadd10ab67a9cc938eb2818aae33d5be0238a
https://github.com/postgres/postgres/commit/db2faa943a0d3517f9e9641b9012d81ecc870ff6
https://github.com/postgres/postgres/commit/5b0740d3fcd55f6e545e8bd577fe8ccba2be4987
https://github.com/postgres/postgres/commit/f0e37a85319e6c113ecd3303cddeb6edd5a6ac44
https://github.com/postgres/postgres/commit/a70e74b060ab2769523ad831f571cb80122121d3
https://github.com/postgres/postgres/commit/741510521caea7e1ca12b4db0701bbc2db346a5f

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.39

Probably the bottleneck is storage

Group commit

commit 741510521caea7e1ca12b4db0701bbc2db346a5f
Author: Vadim B. Mikheev <vadim4o@yahoo.com>
Date: Thu Nov 30 01:47:33 2000 +0000

 XLOG stuff for sequences.
 CommitDelay in guc.c

 src/backend/access/transam/rmgr.c | 15 ++------
 src/backend/access/transam/xact.c | 4 +--
 src/backend/access/transam/xlog.c | 40 +++++++++++++--------
 src/backend/commands/sequence.c | 180
+++
+++++++++++++-------------
 src/backend/utils/misc/guc.c | 13 ++++---
 src/include/access/htup.h | 6 ++--
 src/include/access/rmgr.h | 3 +-
 src/include/access/xlog.h | 8 ++++-
 src/include/catalog/catversion.h | 4 +--
 src/include/commands/sequence.h | 35 ++++++++++++++++--
 10 files changed, 241 insertions(+), 67 deletions(-)

Introduced in 7.1

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.40

Probably the bottleneck is storage

Group commit

commit e620ee35b249b0af255ef788003d1c9edb815a35
Author: Simon Riggs <simon@2ndQuadrant.com>
Date: Wed Dec 8 18:48:03 2010 +0000

 Optimize commit_siblings in two ways to improve group commit.
 First, avoid scanning the whole ProcArray once we know there
 are at least commit_siblings active; second, skip the check
 altogether if commit_siblings = 0.

 Greg Smith

 doc/src/sgml/config.sgml | 17 ++++++++++++-----
 src/backend/access/transam/xact.c | 2 +-
 src/backend/storage/ipc/procarray.c | 17 ++++++++++++-----
 src/backend/utils/misc/guc.c | 2 +-
 src/include/storage/procarray.h | 2 +-
 5 files changed, 27 insertions(+), 13 deletions(-)

Introduced in 9.1

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.41

Probably the bottleneck is storage

Group commit

commit f11e8be3e812cdbbc139c1b4e49141378b118dee
Author: Robert Haas <rhaas@postgresql.org>
Date: Mon Jul 2 10:26:31 2012 -0400

 Make commit_delay much smarter.

 Instead of letting every backend participating in a group commit wait
 independently, have the first one that becomes ready to flush WAL wait
 for the configured delay, and let all the others wait just long enough
 for that first process to complete its flush. This greatly increases
 the chances of being able to configure a commit_delay setting that
 actually improves performance.

 As a side consequence of this change, commit_delay now affects all WAL
 flushes, rather than just commits. There was some discussion on
 pgsql-hackers about whether to rename the GUC to, say, wal_flush_delay,
 but in the absence of consensus I am leaving it alone for now.

 Peter Geoghegan, with some changes, mostly to the documentation, by me.

 doc/src/sgml/config.sgml | 35 +++++++++++++++++++----------------
 doc/src/sgml/wal.sgml | 4 +---
 src/backend/access/transam/xact.c | 19 -------------------
 src/backend/access/transam/xlog.c | 59 ++++++++++++++++++++++++++++++++++++++---------------------
 4 files changed, 58 insertions(+), 59 deletions(-)

Introduced in 9.3

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.42

Changing commit_delay

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.43

Let's test
Different type of queries

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.44

Let's test: Difference between query types

• Run on GCP (n8)
• Run on tmpfs
• Run Prepared
• Test with and without Transaction Control
• Run with 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000 threads

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.45

Query types (with Transaction Control)

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.46

Query types (without Transaction Control, read/write)

Postgres reports same as threads
So, without Transaction Control, Postgres
wraps reads and writes into a transaction.
But it is faster than using Transaction Control.

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.47

Query types (without Transaction Control, simple)

• Could not read this from Postgres
• This is Queries per second

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.48

Let's test
Impact of Programming language

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.49

Efficient programming language

https://www.rust-lang.org/

Rust is blazingly fast and memory-efficient:
with no runtime or garbage collector, it can
• power performance-critical services,
• run on embedded devices, and
• easily integrate with other languages.

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.50

[root@6abd33baf7d3 /]# ~/test_with_go
2019/07/05 10:52:16 TPS: 33790.740819
2019/07/05 10:52:17 TPS: 33376.113974
2019/07/05 10:52:18 TPS: 35445.123329
2019/07/05 10:52:19 TPS: 34871.932790
2019/07/05 10:52:20 TPS: 35750.724915
2019/07/05 10:52:21 TPS: 34836.967868
2019/07/05 10:52:22 TPS: 34943.431673
2019/07/05 10:52:23 TPS: 37725.527713
2019/07/05 10:52:24 TPS: 34402.818432
2019/07/05 10:52:25 TPS: 34382.913243

[root@6abd33baf7d3 /]# ~/test_with_rust
Initializing all threads
Connectstring: postgres://postgres@localhost:5432/postgres
Query: SELECT $1
SType: prepared
Date time (sec) | Sample period | Threads | Postgres |
 | | Average TPS | Total TPS | tps | wal/s |
2019-07-05 10:52:32.757321 1.005000 352699.969 10580999.000 0.983 0.000
2019-07-05 10:52:33.774815 1.005000 346679.062 10400372.000 0.983 0.000
2019-07-05 10:52:34.788588 1.001000 368831.781 11064953.000 0.986 0.000
2019-07-05 10:52:35.805328 1.005000 309643.344 9289300.000 0.984 0.000
2019-07-05 10:52:36.826486 1.008000 332049.375 9961481.000 0.979 0.000
2019-07-05 10:52:37.852077 1.014000 341096.094 10232883.000 0.975 0.000
2019-07-05 10:52:38.874427 1.011000 335545.719 10066372.000 0.978 0.000
2019-07-05 10:52:39.903272 1.017000 332043.938 9961318.000 0.972 0.000

Let's give the threads some time to stop
Finished
[root@6abd33baf7d3 /]#

About 34 thousand QPS About 10 Million QPS (About 300 times more)

GoLang Rust

Let's test: Impact of more efficient programming languages

Simple Query, no Transaction Control, Prepared:

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.51

Some final thoughts
Summarizing the results

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.52

Some final thoughts

• The 'happy zone'
• Reads: 5 - 100 parallel connections
• Writes: 50 and 500 parallel connections
• Higher than 200: System stability decreases

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.53

Some final thoughts

• Adding cores
• tps ↑
• 'the happy zone' ↑

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.54

Some final thoughts

• Compare Prepare vs Unprepared
• Preparing (150%) increases TPS by about 50% vs Unprepared (100%)

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.55

Some final thoughts

• Transaction Control
• Writing + Transaction Control = -50%
• Storage ramp up: (8 core >30 threads)

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.56

Some final thoughts

• Compare running on disk vs tmpfs vs
fsync=off

• Perf=True: tmpfs / wal on tmpfs / fsync=off
• Running on disks (as we always do)

• Adds a bottleneck, but only for writes
• shifts the happy zone up

• more connections helps writes on SSD
more)

• Happy zone 10 → 50

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.57

Some final thoughts

• Programming language
• Optimized for much little things
• Rust: compiled, no garbage collection
• Rust outperformed GoLang hugely in some cases

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.58

Answer (how many cpu, 60.000 TPS)

configuration #cores #threads

empty/simple 7 9

writes w/o transaction control 11 133

writes on tmpfs, no_fsync 13 38

read on SSD 14 11

Writes on SSD 18 225

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.

60000 TPS

How many CPUs ???

The results of an interesting research

Sebastiaan Mannem

59

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.

QUESTIONS & DISCUSSION

60

CONFIDENTIAL © Copyright EnterpriseDB Corporation, 2019. All rights reserved.61

Solutions Architect

EnterpriseDB

Professional Services

sebas@mannem.nl
sebastiaan.mannem@enterprisedb.com

